Find Avacopan manufacturers, exporters & distributors on PharmaCompass

PharmaCompass

Synopsis

Synopsis

ACTIVE PHARMA INGREDIENTS

0

CEP/COS

CEP/COS Certifications

0

EU WC

EU WC

0

KDMF

KDMF

0

VMF

NDC API

API REF. PRICE (USD/KG)

$
$ 0

MARKET PLACE

0

FDF

0INTERMEDIATES

FINISHED DOSAGE FORMULATIONS

0

Europe

Europe

0

Australia

Australia

0

South Africa

South Africa

0

Listed Dossiers

Listed Dossiers

FDF Dossiers

DRUG PRODUCT COMPOSITIONS

REF. STANDARDS OR IMPURITIES

0

EDQM

0

USP

0

JP

0

Others

PATENTS & EXCLUSIVITIES

0

Health Canada Patents

DIGITAL CONTENT

0

Stock Recap #PipelineProspector

0

Weekly News Recap #Phispers

GLOBAL SALES INFORMATION

Finished Drug Prices

NA

0RELATED EXCIPIENT COMPANIES

0EXCIPIENTS BY APPLICATIONS

Chemistry

Click the arrow to open the dropdown
read-moreClick the button for full data set
Also known as: 1346623-17-3, Ccx168, Avacopan [inn], Avacopan [usan], Ccx-168, O880nm097t
Molecular Formula
C33H35F4N3O2
Molecular Weight
581.6  g/mol
InChI Key
PUKBOVABABRILL-YZNIXAGQSA-N
FDA UNII
O880NM097T

Avacopan
Anti-neutrophil cytoplasmic (auto)antibody (ANCA)-associated vasculitis (AAV) is a rare (estimated incidence of 3 cases per 100,000 per year) form of "pauci-immune" systemic small-vessel vasculitis typified by the presence of ANCAs in the serum. The full spectrum of AAV includes granulomatosis with polyangiitis (GPA), microscopic polyangiitis (MPA), eosinophilic granulomatosis with polyangiitis (EGPA), and drug-induced AAV. AAV may be associated with necrotizing and crescentic glomerulonephritis (NCGN). Despite complex pathophysiology, studies over the past ~2 decades have identified a key role for the alternative complement pathway and, in particular, the interaction between the anaphylatoxin fragment C5a and its cognate C5aR receptor in AAV. Avacopan (formerly CCX168) is an allosteric C5aR antagonist indicated for use in AAV. Avacopan was granted FDA approval on October 8, 2021, and is currently marketed under the name TAVNEOS by ChemoCentryx, Inc.
Avacopan is a Complement 5a Receptor Antagonist. The mechanism of action of avacopan is as a Complement 5a Receptor Antagonist, and Cytochrome P450 3A4 Inhibitor.
1 2D Structure

Avacopan

2 Identification
2.1 Computed Descriptors
2.1.1 IUPAC Name
(2R,3S)-2-[4-(cyclopentylamino)phenyl]-1-(2-fluoro-6-methylbenzoyl)-N-[4-methyl-3-(trifluoromethyl)phenyl]piperidine-3-carboxamide
2.1.2 InChI
InChI=1S/C33H35F4N3O2/c1-20-12-15-25(19-27(20)33(35,36)37)39-31(41)26-10-6-18-40(32(42)29-21(2)7-5-11-28(29)34)30(26)22-13-16-24(17-14-22)38-23-8-3-4-9-23/h5,7,11-17,19,23,26,30,38H,3-4,6,8-10,18H2,1-2H3,(H,39,41)/t26-,30-/m0/s1
2.1.3 InChI Key
PUKBOVABABRILL-YZNIXAGQSA-N
2.1.4 Canonical SMILES
CC1=C(C(=CC=C1)F)C(=O)N2CCCC(C2C3=CC=C(C=C3)NC4CCCC4)C(=O)NC5=CC(=C(C=C5)C)C(F)(F)F
2.1.5 Isomeric SMILES
CC1=C(C(=CC=C1)F)C(=O)N2CCC[C@@H]([C@@H]2C3=CC=C(C=C3)NC4CCCC4)C(=O)NC5=CC(=C(C=C5)C)C(F)(F)F
2.2 Other Identifiers
2.2.1 UNII
O880NM097T
2.3 Synonyms
2.3.1 MeSH Synonyms

1. Ccx168

2.3.2 Depositor-Supplied Synonyms

1. 1346623-17-3

2. Ccx168

3. Avacopan [inn]

4. Avacopan [usan]

5. Ccx-168

6. O880nm097t

7. (2r,3s)-2-(4-(cyclopentylamino)phenyl)-1-(2-fluoro-6-methylbenzoyl)-n-(4-methyl-3-(trifluoromethyl)phenyl)piperidine-3-carboxamide

8. (2r,3s)-2-[4-(cyclopentylamino)phenyl]-1-(2-fluoro-6-methylbenzoyl)-n-[4-methyl-3-(trifluoromethyl)phenyl]piperidine-3-carboxamide

9. Tavneos

10. 3-piperidinecarboxamide, 2-(4-(cyclopentylamino)phenyl)-1-(2-fluoro-6-methylbenzoyl)-n-(4-methyl-3-(trifluoromethyl)phenyl)-, (2r,3s)-

11. Ccx168; Avacopan

12. Avacopan [jan]

13. Avacopan [usan:inn]

14. Avacopan [who-dd]

15. Avacopan (jan/usan/inn)

16. Unii-o880nm097t

17. Avacopan [orange Book]

18. Gtpl9450

19. Schembl2567144

20. Chembl3989871

21. C33h35f4n3o2

22. Dtxsid701102660

23. Ex-a2605

24. Mfcd28502293

25. At30195

26. Cs-6888

27. Db15011

28. Ac-35654

29. Hy-17627

30. J3.663.585a

31. D11093

32. Q27285470

33. (2r,3s)-2-[4-(cyclopentylamino)phenyl]-1-(2-fluoro-6-methyl-benzoyl)-n-[4-methyl-3-(trifluoromethyl)phenyl]piperidine-3-carboxamide

34. (2r,3s)-2-[4-(cyclopentylamino)phenyl]-1-(2-fluoro-6-methylbenzene-1-carbonyl)-n-[4-methyl-3-(trifluoromethyl)phenyl]piperidine-3-carboxamide

35. (2r,3s)-2-[4-(cyclopentylamino)phenyl]-1-(2-fluoro-6-methylbenzoyl)-n-[4-methyl-3-(trifluoromethyl)phenyl]-3-piperidinecarboxamide

36. Efd

2.4 Create Date
2011-01-24
3 Chemical and Physical Properties
Molecular Weight 581.6 g/mol
Molecular Formula C33H35F4N3O2
XLogP37.2
Hydrogen Bond Donor Count2
Hydrogen Bond Acceptor Count7
Rotatable Bond Count6
Exact Mass581.26654002 g/mol
Monoisotopic Mass581.26654002 g/mol
Topological Polar Surface Area61.4 Ų
Heavy Atom Count42
Formal Charge0
Complexity918
Isotope Atom Count0
Defined Atom Stereocenter Count2
Undefined Atom Stereocenter Count0
Defined Bond Stereocenter Count0
Undefined Bond Stereocenter Count0
Covalently Bonded Unit Count1
4 Drug and Medication Information
4.1 Drug Indication

Avacopan is indicated for the adjunctive treatment of adult patients with severe active anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis (granulomatosis with polyangiitis and microscopic polyangiitis; GPA/MPA) in combination with standard therapy including glucocorticoids. Avacopan does not eliminate the need for glucocorticoids.


Tavneos, in combination with a rituximab or cyclophosphamide regimen, is indicated for the treatment of adult patients with severe, active granulomatosis with polyangiitis (GPA) or microscopic polyangiitis (MPA).


5 Pharmacology and Biochemistry
5.1 Pharmacology

Avacopan is a complement 5a receptor (C5aR) antagonist that blocks C5a-induced upregulation of C11b (integrin alpha M) on neutrophils and inhibits C5a-mediated neutrophil activation and migration. Avacopan has been associated with hypersensitivity reactions, including angioedema, and hepatotoxicity, as evidenced by elevated liver transaminases. Likely due to its effect on the complement pathway, avacopan has also been associated with hepatitis B virus reactivation and serious infections, which should be monitored for as appropriate.


5.2 FDA Pharmacological Classification
5.2.1 Active Moiety
AVACOPAN
5.2.2 FDA UNII
O880NM097T
5.2.3 Pharmacological Classes
Mechanisms of Action [MoA] - Cytochrome P450 3A4 Inhibitors
5.3 ATC Code

L04


5.4 Absorption, Distribution and Excretion

Absorption

In AAV patients receiving 30 mg avacopan twice daily, avacopan had a Cmax of 349 169 ng/mL and an AUC0-12hr of 3466 1921 ng\*h/mL. On this dosing scheme, steady-state plasma concentrations are reached by 13 weeks with a roughly 4-fold accumulation. Co-administration of 30 mg with a high-fat meal increased the Cmax by ~8%, the AUC by ~72%, and delayed the Tmax by four hours (from two hours).


Route of Elimination

Avacopan is mainly eliminated in feces, with smaller amounts present in the urine. Following oral administration of the radiolabeled drug, roughly 77% (7% as unchanged avacopan) was recovered in feces while 10% (<0.1% unchanged) was recovered in urine.


Volume of Distribution

Avacopan has an apparent volume of distribution of 345 L.


Clearance

Avacopan has an estimated total apparent body clearance (CL/F) of 16.3 L/h.


5.5 Metabolism/Metabolites

Avacopan is metabolized primarily by CYP3A4. The major circulating M1 metabolite, a mono-hydroxylated form of avacopan, represents ~12% of drug plasma levels and acts as a C5aR antagonist with similar efficacy to avacopan itself.


5.6 Biological Half-Life

A single 30 mg dose of avacopan given with food to healthy subjects resulted in mean elimination half-lives of 97.6 and 55.6 hours for avacopan and its M1 metabolite, respectively.


5.7 Mechanism of Action

Anti-neutrophil cytoplasmic (auto)antibody (ANCA)-associated vasculitis (AAV) is considered a "pauci-immune" form of systemic small-vessel vasculitis accompanied by the presence of ANCAs in the serum. The full spectrum of AAV includes granulomatosis with polyangiitis (GPA), microscopic polyangiitis (MPA), eosinophilic granulomatosis with polyangiitis (EGPA), and drug-induced AAV. AAV may be associated with necrotizing and crescentic glomerulonephritis (NCGN). Of the various known ANCAs, the major antigens are myeloperoxidase (MPO) and proteinase 3 (PR3/myeloblastin). The pathophysiology giving rise to AAV is complex, though a working model has been proposed. An initial trigger, such as infection, causes differentiation of naive T cells into TH17 helper T cells that induce the release from macrophages of pro-inflammatory cytokines (e.g., TNF- and IL-1), which prime neutrophils. Concurrently, the anaphylatoxin C5a is produced through activation of the alternative complement pathway, which also primes neutrophils through binding to the C5a receptor (C5aR; CD88). Primed neutrophils undergo physiological changes, including upregulating the display of ANCA antigens on their surface. Circulating ANCAs bind to displayed ANCA antigens on the surface of neutrophils; simultaneously, the Fc region of these ANCAs is recognized by Fc receptors on other neutrophils, resulting in excessive neutrophil activation. Activated neutrophils form NETs (neutrophil extracellular traps), which induce tissue damage and vasculitis. MPO/PR3 in NETs induces further ANCA production through dendritic cell- and CD4+ T cell-mediated activation of B cells, further exacerbating the condition. A role for complement was not initially considered in AAV due to a lack of excessive complement or immunoglobulin deposition in AAV lesions. However, extensive molecular studies confirmed a significant role for the alternative complement pathway, acting through C3 and C5, in the pathogenesis of AAV. The C5a fragment, generated by C5 cleavage, can bind to both the C5aR and C5a-like receptor (C5L2) on the surface of neutrophils; C5aR binding is associated with AAV while C5L2 binding has a protective effect. As the alternative complement pathway is self-sustaining in the absence of down-regulation by specific proteins, it is likely a significant driver of AAV. Furthermore, neutrophils activated by C5a release reactive oxygen species, properdin, and other molecules that stimulate the complement pathway leading to the production of more C5a in a vicious cycle. Avacopan (CCX168) is a specific C5aR receptor allosteric antagonist that inhibits C5a-mediated neutrophil activation both _in vitro_ and _in vivo_. By inhibiting the C5a/C5aR axis, avacopan should have minimal effects on the formation of the membrane attack complex (which includes C5b) and therefore little effect on the innate immune response in treated patients.


Digital Content read-more

Create Content with PharmaCompass, ask us

DATA COMPILATION #PharmaFlow

read-more
read-more

NEWS #PharmaBuzz

read-more
read-more

Global Sales Information

Do you need Business Intel? Ask us

Market Place

Do you need sourcing support? Ask us

Patents & EXCLUSIVITIES

Check the patents & exclusivity for this product

ABOUT THIS PAGE

Ask Us for Pharmaceutical Supplier and Partner
Ask Us, Find A Supplier / Partner
No Commissions, No Strings Attached, Get Connected for FREE

What are you looking for?

How can we help you?

The request can't be empty

Please read our Privacy Policy carefully

You must agree to the privacy policy

The name can't be empty
The company can't be empty.
The email can't be empty Please enter a valid email.
The mobile can't be empty