Poster Number 18W1100

Novel Continuous Wet Granulation Using Twin Screw Fractional Lobe Processor Authors: Vinay Rao, Vijay Kulkarni, Babu Padmanabhan, Radhika Ghike, Robert Roden, Ed Ford

STEER*LIFE* INDIA PVT. LTD

1. PURPOSE

The desired paradigm shift from batch to continuous scale in pharmaceutical sector requires a reliable continuous granulation process. The objective of the present study was to evaluate the effect of screw element geometries for continuous wet granulation operation using a Twin screw processor. Physical properties of granules and compressed tablets were compared for conventional Bi- lobed geometry (BLP) and the Steer patented Fractional lobed geometry (FLP)

2. METHOD

2.1: Formulation

Table 1: Composition for Metformin HCI Granules

Sr. No.	Ingredients	% w/w
1.	Metformin Hydrochloride	95.67
2.	Pregelatinized starch	1.01
3.	Povidone	3.32

2.2 Preparation of Granules:

The entire sequence of feeding, kneading, drying and sizing was accomplished in a single and continuous processing step. The process was carried out for two different screw geometries at their respective optimized processing conditions. Granulation was performed using a STEER Omega 20 mm co-rotating twin screw processor L/D of 60 and Do/Di of 1.71.

Fig. 1: BLP Element Sample Fig. 2: FLP Element Sample

Fig. 3: Continuous Twin Screw Granulation Process

able	e 2: Processing Co	onditions for	r FLP				Table 4:	Phys	ical	Prope	erties	of Gr	anule	es:				
Machine FLP					BLP		Parameters							BLP Granules		FLP Granules		
Screw Speed (rpm) 800 800																350		
Feed Rate (g/minute)200100							Bulk Density (g/cc)0.3420.51											
Drying zone temperature (°C) 100 100															0.62	1		
3: Evaluation of Granules:						Carr's Index							31.70		17.23			
ranules were Evaluated for LOD, Sieve Analysis, Friability Test, Bulk and apped Density.						Angle of Repose3324												
	Tablets Compress						Table 5:	Phys	ical	Prope	erties	of Co	ompre	essed T	able	ts		
he dried granules were lubricated using 0.5% w/w magnesium stearate and 2% w/w crospovidone and compressed into tablets and evaluated for - Weight ariation, Hardness, Friability and Disintegration Time.					.	TabletAvgThicknessWeight(mm)(mg)			Weight Variation (%)		Friability (%)		/ Hardnes (KP)		s DT (min)			
								BLP	FLP	BLP	FLP	BLP	FLP	BLP	FLP	BLF	FLF	
		3. R	RESULTS	5			5.6	520	521	4.72	2.08	0.53	0.17	10- 12	10- 1	2 5-8	6-8	
1:	Particle Size and S	Shape Analy	sis:				5.8	526	522	3.71	1.72	0.73	0.18	8-10	8-10	5-8	6-8	
ble 3: Comparative Particle Size Distribution						6.0	527	525	4.82	1.93	0.88	0.20	6-8	6-8	4-6	5-7		
	•		ulative % R		(% w/w)		6.2	522	527	3.65	1.78	1.35	0.39	4-6	4-6	4-6	5-7	
	Sieve No.	BL	P															
	# 20	1:	5		9	Comparing FLP vs BLP, the FLP granules have follo properties :									follo	wing		
	# 100	6	6		87	 Better Tensile strength and Friability. 												
Fines 34 13							Higher mean particle diameter with lower fines											
	Median Diameter	250 m	icrons	38	0 microns		 More Symmetrical Morphology Better flow and higher compressibility 											
							BetterBetter			•	•		•	ot woigh	t var	iation		
				ali			Tablets	•	•			IUWEI	labit	et weigi	it vai			
						4. CONCLUSION												
					bgy of BLP Granules d and photographe)	Fractional granule doubled processo demonst measure without i	prope for F or. S rates ed in nvolvi	rties racti STEE imp term	as co onal I ER <i>Life</i> roved s of b epara	brown bobe p e's e ability oth me te dryi	ed to I proces experi- / to p ean a ing an	Bi-lob sor a ence roduc nd dis d mill	ed. The as comp with ce custo stribution	thro parec this omize n of p s .	ughpu I to Bi s pro ed gra particle	t was -lobe ocess nules	

2.3:

2.4

<u>3.1:</u>

Tab

ble 2: Proc	cessing Co	onditions for FLP				Table 4:	Phys	ical	Prope	erties	of Gr	anule	<u>es:</u>						
Machine			FLP	BLP			C	BLP Granule	s	FLP Granules									
Screw Speed (rpm) 800 800						Particle Diameter after friability (µm) 150 350										C			
Feed Rate (g/minute)200100							Bulk Density (g/cc) 0.342 0.51									1			
Drying zone temperature (°C) 100 100						Tapped Density (g/cc) 0.502 0.621									21				
3: Evaluation of Granules: anules were Evaluated for LOD, Sieve Analysis, Friability Test, Bulk and				k k	Carr's Index 31.70 17.23									23					
pped Densi	,					Angle o	-		Dropo				33	'a h la	24				
	-	ion and Evaluation : re lubricated using (magnesium steara	ate and	Table 5:			Prope	erties		ompre		apie	ets				
 e dried granules were lubricated using (2% w/w crospovidone and compressed into riation, Hardness, Friability and Disintegratic 			tablets an	•		TabletAvg WeightWeight Variation (%)Fi(mm)(mg)(mg)						bility %)	ty Hardnes (KP)		s DT (min)				
							BLP	FLP	BLP	FLP	BLP	FLP	BLP	FLF	P BL	P FLI			
		3. RESU				5.6	520	521	4.72	2.08	0.53	0.17	10- 12	10- 1	2 5-	8 6-8			
: Particle	Size and S	Shape Analysis:				5.8	526	522	3.71	1.72	0.73	0.18	8-10	8-1() 5-	8 6-8			
		article Size Distribu	ition			6.0	527	525	4.82	1.93	0.88	0.20	6-8	6-8	4-	6 5-7			
Cumulative %				d (% w/w)		6.2	522	527	3.65	1.78	1.35	0.39	4-6	4-6	4-	6 <mark>5-</mark> 7			
Siev	ve No.	BLP	BLP FLP				Results:												
#	ŧ 20	15		9		Comparing FLP vs BLP, the FLP granules have following properties :													
#	100	66		87		Better		e str	ength	and	Friabi	lity.	/.						
Fi	ines	34		13		Higher mean particle diameter with lower fines													
Median	Diameter	250 microns		380 microns		More Symmetrical Morphology													
						Better			•	•		•	- (¹						
			1.32		513	Better Tablets	•	•			Iowei	tadie	et weigr	nt va	riatior				
						4. CONCLUSION													
		Image: state stat				Fractional granule doubled processo demonst measure without i	prope for F or. S rates ed in nvolvi	rties racti STEI imp term	as co onal I ER <i>Life</i> roved s of be eparat	mpare obe p e's e ability oth me te dryi	ed to proces experi y to p ean a ing ar	Bi-lob ssor a ence produc nd dis nd mill	ed. The as comp with ce custo stribution ling step	thro bared thi omiz n of os	oughp d to E s pr ed gra partic	ut was Bi-lobe rocess anules le size			
nticles ret	tained on		75	T	EE	R.	Li	†e	WWW For more informat	ion: indu.t	hushan@stee	world.com							

2016 AA NOVEMBER 13-17, 2016

COLORADO CONVENTION CENTER, DENVER

\checkmark aaps

