	(Drugs V)	0
ledical C	Targets (24) Enzymes (29) Transporters (3) Biointeractions (11)	
DENTIFICATION		
Name	Medical Cannabis	
Accession Number	DB14009	
Туре	Biotech	
Groups	Experimental, Investigational	
Description	The use of the plant species <i>Cannabis sativa</i> and <i>Cannabis indica</i> , popularly known as marijuana, has gained popularity in recent years for the management of a wide variety of medical conditions as a wave of legalization in North America has changed public and medical opinion on its use. Consequently, an expanding body of evidence has begun to emerge that has demonstrated its potential usefulness in the management of conditions such as chronic pain, spasticity, inflammation, epilepsy, and chemotherapy-induced nausea and vomiting among many others ^[2] . This area of research is controversial and has been heavily debated, however, due to concerns over risks of addiction, long-term health effects, and Cannabis' association with schizophrenia.	
	From a pharmacological perspective, Cannabis' diverse receptor profile explains its potential application for such a wide variety of medical conditions. Cannabis contains more than 400 different chemical compounds, of which 61 are considered cannabinoids, a class of compounds that act upon cannabinoid receptors of the body ^[1] . Tetrahydrocannabinol (THC) and <u>Cannabidiol</u> (CBD) are two types of cannabinoids found naturally in the resin of the marijuana plant, both of which interact with the cannabinoid receptors that are found throughout the body. Although THC and CBD have been the most studied cannabinoids, there are many others identified to date including cannabinol (CBN), cannabigerol (CBG), <u>Cannabidivarin</u> (CBDV), and <u>Tetrahydrocannabivarin</u> (THCV) that have been shown to modify the physiological effects of cannabis ^[10] . While both CBD and THC are used for medicinal purposes, they have different receptor activity, function, and physiological effects. THC and CBD are converted from their precursors, tetrahydrocannabinolic acid-A (THCA-A) and cannabidiolic acid (CBDA), through decarboxylation when unfertilized female cannabis flowers are activated either through heating, smoking,	

vaporization, or baking. While cannabis in its natural plant form is currently used "off-label" for the management of many medical conditions, THC is currently commercially available in synthetic form as <u>Nabilone</u>, as purified isomer as <u>Dronabinol</u>, or in a 1:1 formulation with CBD from purified plant extract as <u>Nabiximols</u>.

Cannabinoid receptors are utilized endogenously by the body through the endocannabinoid system, which includes a group of lipid proteins, enzymes, and receptors that are involved in many physiological processes. Through its modulation of neurotransmitter release, the endocannabinoid system regulates cognition, pain sensation, appetite, memory, sleep, immune function, and mood among many others. These effects are largely mediated through two members of the G-protein coupled receptor family, cannabinoid receptors 1 and 2 (CB1 and CB2) ^[2]. CB1 receptors are found in both the central and peripheral nervous systems, with the majority of receptors localized to the hippocampus and amygdala of the brain. Physiological effects of using cannabis make sense in the context of its receptor activity as the hippocampus and amygdala are primarily involved with regulation of memory, fear, and emotion. In contrast, CB2 receptors are mainly found peripherally in immune cells, lymphoid tissue, and peripheral nerve terminals ^[4].

The primary psychoactive component of Cannabis, delta 9-tetrahydrocannabinol (Δ 9-THC),

cannabis such as increased appetite, reduced pain, and changes in emotional and cognitive

(Drugs

 \sim

	allosteric modulator of the canna Receptor (GPCR) in the body ^[5] . receptor activity on a functionally	reak agonist activity, CBD has been solution of CB1 receptor, the most abun Allosteric regulation is achieved thro y distinct site from the agonist or ar rect agonists are limited by their psy their depressant effects ^[5] .	dant G-Protein Coupled ough the modulation of ntagonist binding site, which	
	receptors, antagonizes alpha-1 ac noradrenaline, dopamine, serotor acts on mitochondria Ca2 stores,	D also activates 5-HT1A serotonergic Irenergic and μ-opioid receptors, inh hin and gaminobutyric acid and cellu blocks low-voltage-activated (T-type receptor, and inhibits activity of fatt	iibits synaptosomal uptake of Ilar uptake of anandamide, e) Ca2 channels, stimulates	
	understandably used to treat diff has been shown to modulate THC between "strains", or chemovars concentrations of CBD and THC. been shown to reduce the psycho the effects of Cannabis is complic numerous other compounds that	or profile between CBD and THC, the erent conditions. Furthermore, wher C's activity, resulting in differences in , of the Cannabis plant which are bre For example, strains containing a hig osis- and anxiety-inducing effects of cated by the large variety of available cannabis contains such as terpenes by others that have shown potential	n combined with THC, CBD n pharmacological effect ed to contain different gh proportion of CBD have THC ^[13] . Reliably studying e strains and by the s, flavonoids, phenols, amino	
Synonyms	Cannabis			
	Cannabis indica			
	Cannabis indica top			
	Cannabis sativa subsp. indica top			
	Cannabis sativa subsp. indica top ext	ract		
	Hashish top			
	Marihuana			
	Marijuana 			
	Marijuana top			
Categories	<u>Agents producing tachycardia</u>	<u>Cytochrome P-450 CYP2C9</u>	<u>Cytochrome P-450 CYP3A4</u>	
	BCRP/ABCG2 Inhibitors	<u>Inhibitors (moderate)</u>	<u>Substrates</u>	
	<u>Cytochrome P-450 CYP2C9</u> Inhibitors	<u>Cytochrome P-450 CYP2C9</u> <u>Substrates</u>	<u>Cytochrome P-450 Enzyme</u> <u>Inhibitors</u>	
		<u>Cytochrome P-450 CYP3A</u> <u>Substrates</u>	Pharmaceutical Preparations	

Q)

CAS number Not Available

PHARMACOLOGY

Indication Not Available

Pharmacodynamics The primary psychoactive component of Cannabis, delta 9-tetrahydrocannabinol (Δ 9-THC), demonstrates its effects through weak partial agonist activity at Cannabinoid-1 (CB1R) and Cannabinoid-2 (CB2R) receptors. This activity results in the well-known effects of smoking cannabis such as increased appetite, reduced pain, and changes in emotional and cognitive processes.

Drugs

(GPCR) in the body 🖾. There is further evidence that CBD also activates 5-HT1A serotonergic and TRPV1-2 vanilloid receptors, antagonizes alpha-1 adrenergic and µ-opioid receptors, inhibits synaptosomal uptake of noradrenaline, dopamine, serotonin and gaminobutyric acid and cellular uptake of anandamide, acts on mitochondria Ca2 stores, blocks low-voltage-activated (T-type) Ca2 channels, stimulates activity of the inhibitory glycine-receptor, and inhibits activity of fatty amide hydrolase (FAAH) ^[6, Z].

Mechanism of

action

TARGET	ACTIONS	ORGANIS
A <u>Cannabinoid receptor 1</u>	negative modulator	Humans
U <u>Cannabinoid receptor 2</u>	Not Available	Humans
U <u>G-protein coupled receptor 12</u>	inverse agonist	Humans
U <u>Glycine receptor subunit alpha-1</u>	Not Available	Humans
U <u>Glycine receptor (alpha-1/beta)</u>	Not Available	Humans
U <u>Glycine receptor subunit alpha-3</u>	Not Available	Humans
<u>N-arachidonyl glycine receptor</u>	Not Available	Humans
U <u>G-protein coupled receptor 55</u>	Not Available	Humans
<u>5-hydroxytryptamine receptor 1A</u>	Not Available	Humans
<u>5-hydroxytryptamine receptor 2A</u>	Not Available	Humans
Neuronal acetylcholine receptor subunit alpha-7	Not Available	Humans
U <u>Delta-type opioid receptor</u>	Not Available	Humans
U <u>Mu-type opioid receptor</u>	Not Available	Humans
Peroxisome proliferator-activated receptor gamma	Not Available	Humans
U Transient receptor potential cation channel subfamily V member 1	Not Available	Humans
U <u>Voltage-dependent T-type calcium channel subunit alpha-1G</u>	Not Available	Humans
U <u>Voltage-dependent T-type calcium channel subunit alpha-1H</u>	Not Available	Humans
Voltage-dependent T-type calcium channel subunit alpha-11	Not Available	Humans
U Transient receptor potential cation channel subfamily A member 1	Not Available	Humans
U Transient receptor potential cation channel subfamily M member 8	Not Available	Humans
U Transient receptor potential cation channel subfamily V member 2	Not Available	Humans
U Transient receptor potential cation channel subfamily V member 3	Not Available	Humans
U Transient receptor potential cation channel subfamily V member 4	Not Available	Humans
Voltage-dependent anion-selective channel protein 1	Not Available	Humans

Absorption

Route of administration and formulation determine the rate of drug absorption. Smoking cannabis provides the most rapid route of absorption directly from lungs to brain (with THC levels reaching their peak within 3-10 minutes), while oral administration (with "edibles") is the slowest (with THC levels reaching their peak within 1-2 hours) [8]. In one study, maximum plasma concentration after oral administration, was found to be 4.4-11 ng/mL for 20 mg of THC and 2.7-6.3 ng/mL for 15 mg ^[1].

Q

Vo	ume	of
dis	tribu	ition

As a very lipophilic molecule, THC is rapidly distributed into highly perfused tissues such as the lungs, heart, brain, and liver resulting in rapid decreases in plasma concentration. This quick distribution is then also followed by a slow re-release from fatty tissues back into the blood stream, prolonging the half-life of THC $[\underline{8}, \underline{1}]$.

Protein binding Not Available

Metabolism

THC is primarily metabolized in the liver by microsomal hydroxylation and oxidation reactions catalyzed by Cytochrome P450 enzymes. 11-hydroxy-^9-tetrahydrocannabinol (11-OH-THC) is the primary active metabolite, capable of producing psychological and behavioural effects, which is then metabolized into 11-nor-9-carboxy- 9-tetrahydrocannabinol (THC-COOH), THC's primary inactive metabolite ^[1].

Medical Cannabis > <u>11-hydroxy-THC</u>

	(Drugs V)	٩
Route of elimination	Cannabis is primarily eliminated through the feces, with >65% showing up in elimination studies while 20% is excreted in urine 1 .	
Half life	The half life of THC in the body depends on frequency of use: for a one time user, THC may be detectable in the blood for up to 1.3 days post-use, while for a frequent user may be present in the bloodstream for 5-13 days ^[8, 1]	
Clearance	One study reported average plasma clearance rates to be 11.8± 3 L/hour for women and 14.9 ±3.7 L/hour for men ^[2] . Others have determined approximately 36 L/hour for naïve cannabis users and 60 L/hour for regular cannabis users ^[1] .	
Toxicity	Not Available	
Affected organisms	Not Available	
Pathways	Not Available	
Pharmacogenomic Effects/ADRs ①	Not Available	

INTERACTIONS

Drug Interactions	ALL DRUGS APPROVED	VET APPROVED NUTRACEUTICAL ILLICIT	WITHDRAWN
	Show 10 entries		Search
	DRUG ↑↓	INTERACTION	$\uparrow\downarrow$
	<u>(R)-warfarin</u>	The metabolism of Medical Cannabis can be decreased whe warfarin.	n combined with (R)-
	<u>(S)-Warfarin</u>	The metabolism of (S)-Warfarin can be decreased when con Cannabis.	nbined with Medical
	<u>2,5-Dimethoxy-4-</u> <u>ethylamphetamine</u>	The risk or severity of Tachycardia can be increased when 2, ethylamphetamine is combined with Medical Cannabis.	,5-Dimethoxy-4-
	<u>2,5-Dimethoxy-4-</u> <u>ethylthioamphetamine</u>	The risk or severity of Tachycardia can be increased when 2, ethylthioamphetamine is combined with Medical Cannabis.	,5-Dimethoxy-4-
	<u>3,4-</u> <u>Methylenedioxyamphetamine</u>	The risk or severity of Tachycardia can be increased when 3, Methylenedioxyamphetamine is combined with Medical Car	
	<u>3,5-diiodothyropropionic acid</u>	The metabolism of Medical Cannabis can be decreased whe diiodothyropropionic acid.	n combined with 3,5-
	<u>4-Bromo-2,5-</u> <u>dimethoxyamphetamine</u>	The risk or severity of Tachycardia can be increased when 4 dimethoxyamphetamine is combined with Medical Cannabi	

4-bydroxycoumarin					
<u>4-hydroxycoumarin</u> The metabolism of 4-hydroxycoumarin can be decreased when combined with Medical Cannabis.					
<u>4-Methoxyamphetamine</u>	The risk or severity of Tachycardia can be increased when 4-Methoxyamphetamine is combined with Medical Cannabis.				
<u>5-androstenedione</u>	The metabolism of Medical Cannabis can be decreased when combined with 5- androstenedione.				
Showing 1 to 10 of 1,218 entries	<u>< 1 2 3 4 5 122 ≥</u>				
Not Available					
	<u>5-androstenedione</u> Showing 1 to 10 of 1,218 entries				

	(Drugs v) ()
	Nervous System. Int J Mol Sci. 2018 Mar 13;19(3). pii: ijms19030833. doi: 10.3390/ijms19030833. [<u>PubMed:29533978</u>]	
	3. Pertwee RG: The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-	
	tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br J Pharmacol. 2008 Jan;153(2):199-215. doi:	
	10.1038/sj.bjp.0707442. Epub 2007 Sep 10. [<u>PubMed:17828291</u>]	<
	4. Kaur R, Ambwani SR, Singh S: Endocannabinoid System: A Multi-Facet Therapeutic Target. Curr Clin Pharmacol. 2016;11(2):110-7. [PubMed:27086601]	
	5. Laprairie RB, Bagher AM, Kelly ME, Denovan-Wright EM: Cannabidiol is a negative allosteric modulator of the	
	cannabinoid CB1 receptor. Br J Pharmacol. 2015 Oct;172(20):4790-805. doi: 10.1111/bph.13250. Epub 2015 Oct 13. [<u>PubMed:26218440]</u>	
	6. Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. Neurotherapeutics. 2015 Oct;12(4):699-730. doi: 10.1007/s13311-015-0377-3. [<u>PubMed:26264914</u>]	
	7. Zhornitsky S, Potvin S: Cannabidiol in humans-the quest for therapeutic targets. Pharmaceuticals (Basel). 2012 May 21;5(5):529-52. doi: 10.3390/ph5050529. [<u>PubMed:24281562]</u>	
	8. Huestis MA: Pharmacokinetics and metabolism of the plant cannabinoids, delta9-tetrahydrocannabinol, cannabidiol and cannabinol. Handb Exp Pharmacol. 2005;(168):657-90. [<u>PubMed:16596792</u>]	
	9. Karschner EL, Schwilke EW, Lowe RH, Darwin WD, Herning RI, Cadet JL, Huestis MA: Implications of plasma Delta9- tetrahydrocannabinol, 11-hydroxy-THC, and 11-nor-9-carboxy-THC concentrations in chronic cannabis smokers. J Anal Toxicol. 2009 Oct;33(8):469-77. [<u>PubMed:19874654</u>]	
	10x1col. 2009 Oct;33(8):469-77. [<u>PubMed:19874654</u>] 10. Elsohly MA, Slade D: Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sci. 2005	
	Dec 22;78(5):539-48. doi: 10.1016/j.lfs.2005.09.011. Epub 2005 Sep 30. [PubMed:16199061]	
	11. Pollastro F, Minassi A, Fresu LG: Cannabis Phenolics and their Bioactivities. Curr Med Chem. 2018;25(10):1160-1185. doi: 10.2174/0929867324666170810164636. [PubMed:28799497]	
	12. Baron EP: Comprehensive Review of Medicinal Marijuana, Cannabinoids, and Therapeutic Implications in Medicine	
	and Headache: What a Long Strange Trip It's Been Headache. 2015 Jun;55(6):885-916. doi: 10.1111/head.12570.	
	Epub 2015 May 25. [<u>PubMed:26015168]</u>	
	13. Niesink RJ, van Laar MW: Does Cannabidiol Protect Against Adverse Psychological Effects of THC? Front Psychiatry. 2013 Oct 16;4:130. doi: 10.3389/fpsyt.2013.00130. [<u>PubMed:24137134</u>]	
External Links	Wikipedia <u>Medical cannabis</u>	

CLINICAL TRIALS

Clinical Trials ()

Search entries Show 10 ↑↓ COUNT ↑↓ PHASE $\uparrow \downarrow$ STATUS $\uparrow \downarrow$ PURPOSE 1 CONDITIONS 0 Recruiting Basic Science Cannabis Dependence, Continuous / Cannabis Use Disorders 1 Cannabis / Smoking 0 Recruiting Other 1 <u>Marijuana Impairment</u> 0 Recruiting Other 1 0 Recruiting Other Psychomotor Impairment 1 Active Not <u>COMT Gene Polymorphism</u> Basic Science 1 1 Recruiting 1 Completed Basic Science <u>Cannabis</u> 2 Completed Basic Science Cannabis Use Disorders / Dual Diagnosis / Psychotic Disorder 1 1 NOS / Schizoaffective Disorders / Schizophrenic Disorders Marijuana Use Disorder / Marijuana Use Disorders Completed Basic Science 1 1 Completed Diagnostic Cannabis Intoxication / Cannabis Toxicology 1 1

	1	Completed	Other	<u>Cannabis Use</u>					1		
	Showing	1 to 10 of 58 ent	ries		<u><</u>	1	2 3	<u>3 4</u>	5	<u>6</u>	<u>></u>
PHARMACOECONC	MICS										
Manufacturers	Not Availa	able									
Packagers	Not Availa	able									
Dosage forms	Not Avai	lable									
Prices	Not Avai	lable									

		Drugs v
PROPERTIES		
State	Solid	<
Experimental Properties	Not Available	
TAXONOMY		

Classification

Not classified

TARGETS

1. Cannabinoid receptor 1	Details
Kind	Protein
Organism	Humans
Pharmacological action	Yes
Actions General Function	(Negative modulator) Drug binding
Specific Function	Involved in cannabinoid-induced CNS effects. Acts by inhibiting adenylate cyclase. Could be a receptor for anandamide. Inhibits L-type Ca(2+) channel current. Isoform 2 and isoform 3 have altered l
Gene Name	CNR1
Uniprot ID	<u>P21554</u>
Uniprot Name	Cannabinoid receptor 1
Molecular Weight	52857.365 Da

References

- Pertwee RG: The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br J Pharmacol. 2008 Jan;153(2):199-215. doi: 10.1038/sj.bjp.0707442. Epub 2007 Sep 10.
 [PubMed:17828291]
- 2. Laprairie RB, Bagher AM, Kelly ME, Denovan-Wright EM: Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br J Pharmacol. 2015 Oct;172(20):4790-805. doi: 10.1111/bph.13250. Epub 2015 Oct 13. [PubMed:26218440]
- 3. Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. Neurotherapeutics. 2015 Oct;12(4):699-730. doi: 10.1007/s13311-015-0377-3. [PubMed:26264914]

2. Cannabinoid receptor 2	Details
Kind	Protein
Organism	Humans
Pharmacological action General Function	Unknown Cannabinoid receptor activity
Specific Function	Heterotrimeric G protein-coupled receptor for endocannabinoid 2- arachidonoylglycerol mediating inhibition of adenylate cyclase. May function in inflammatory response, nociceptive transmission and b
Gene Name	CNR2
	50.4070

	Drugs V
Molecular Weight	39680.275 Da
References	
	eceptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol Pharmacol. 2008 Jan;153(2):199-215. doi: 10.1038/sj.bjp.0707442. Epub 2007 Sep 10.
3. G-protein coupled receptor 12	
Kind	Protein
Organism	Humans
Pharmacological action	Unknown
Actions General Function	(Inverse agonist) Promotes neurite outgrowth and blocks myelin inhibition in neuro (By similarity). Receptor with constitutive G(s) signaling activity the stimulates cyclic AMP production.
Specific Function	G-protein coupled receptor activity
Gene Name	GPR12
	<u>P47775</u>
Jniprot ID	
Jniprot ID Jniprot Name	G-protein coupled receptor 12

1. Brown KJ, Laun AS, Song ZH: Cannabidiol, a novel inverse agonist for GPR12. Biochem Biophys Res Commun. 2017 Nov 4;493(1):451-454. doi: 10.1016/j.bbrc.2017.09.001. Epub 2017 Sep 6. [PubMed:28888984]

4. Glycine receptor subunit alpha-1	Details
Kind	Protein
Organism	Humans
Pharmacological action General Function	Unknown Transmitter-gated ion channel activity
Specific Function	The glycine receptor is a neurotransmitter-gated ion channel. Binding of glycine to its receptor increases the chloride conductance and thus

	produces hyperpolarization (inhibition of neuronal firing).
Gene Name	GLRA1
Uniprot ID	<u>P23415</u>
Uniprot Name	Glycine receptor subunit alpha-1
Molecular Weight	52623.35 Da
References	
	elot M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. 4):699-730. doi: 10.1007/s13311-015-0377-3. [<u>PubMed:26264914]</u>
Neurotherapeutics. 2015 Oct;12(4	f. 077750. doi: 10.1007/315511-015-0577-5. [FubMed.20204714]

ind	Protein group	
rganism	Humans	
harmacological action eneral Function	Unknown Transmitter-gated ion channel activity	
pecific Function	The glycine receptor is a neurotransmitte of glycine to its receptor increases the ch produces hyperpolarization (inhibition of	nloride conductance and thus
Components:		
NAME	UNIPROT ID	
Glycine receptor subunit alpha-1	<u>P23415</u>	
Glycine receptor subunit beta	<u>P48167</u>	
	llas M, Whalley BJ: Molecular Targets of Cannabidiol in Neuro doi: 10.1007/s13311-015-0377-3. [<u>PubMed:26264914]</u>	logical Disorders.
1. Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dal		logical Disorders.
1. Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dal Neurotherapeutics. 2015 Oct;12(4):699-730.		
 Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dal Neurotherapeutics. 2015 Oct;12(4):699-730. Glycine receptor subunit alpha-3 	doi: 10.1007/s13311-015-0377-3. [PubMed:26264914]	
 Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dal Neurotherapeutics. 2015 Oct;12(4):699-730. Glycine receptor subunit alpha-3 ind 	doi: 10.1007/s13311-015-0377-3. [PubMed:26264914]	
1. Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dal Neurotherapeutics. 2015 Oct;12(4):699-730. Glycine receptor subunit alpha-3 ind rganism harmacological action	doi: 10.1007/s13311-015-0377-3. [PubMed:26264914] Protein Humans Unknown	Details Details er-gated ion channel. Binding nloride conductance and thus
1. Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dal Neurotherapeutics. 2015 Oct;12(4):699-730. Glycine receptor subunit alpha-3 ind rganism harmacological action eneral Function	doi: 10.1007/s13311-015-0377-3. [PubMed:26264914] Protein Humans Unknown Transmitter-gated ion channel activity The glycine receptor is a neurotransmitte of glycine to its receptor increases the ch	Details Details er-gated ion channel. Binding nloride conductance and thus
1. Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dal Neurotherapeutics. 2015 Oct;12(4):699-730. Glycine receptor subunit alpha-3 ind rganism harmacological action eneral Function pecific Function	doi: 10.1007/s13311-015-0377-3. [PubMed:26264914] Protein Humans Unknown Transmitter-gated ion channel activity The glycine receptor is a neurotransmittee of glycine to its receptor increases the ch produces hyperpolarization (inhibition of	Details Details er-gated ion channel. Binding nloride conductance and thus
1. Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dal Neurotherapeutics. 2015 Oct;12(4):699-730. Glycine receptor subunit alpha-3 ind rganism harmacological action eneral Function pecific Function ener Name	doi: 10.1007/s13311-015-0377-3. [PubMed:26264914] Protein Humans Unknown Transmitter-gated ion channel activity The glycine receptor is a neurotransmittee of glycine to its receptor increases the ch produces hyperpolarization (inhibition of GLRA3	Details Details er-gated ion channel. Binding nloride conductance and thus
1. Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dal Neurotherapeutics. 2015 Oct;12(4):699-730. Glycine receptor subunit alpha-3 ind rganism harmacological action eneral Function pecific Function ene Name niprot ID	doi: 10.1007/s13311-015-0377-3. [PubMed:26264914] Protein Humans Unknown Transmitter-gated ion channel activity The glycine receptor is a neurotransmitter of glycine to its receptor increases the ch produces hyperpolarization (inhibition of GLRA3 075311	Details Details er-gated ion channel. Binding nloride conductance and thus

References

1. Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. Neurotherapeutics. 2015 Oct;12(4):699-730. doi: 10.1007/s13311-015-0377-3. [PubMed:26264914]

7. N-arachidonyl glycine receptor	Details
Kind	Protein
Organism	Humans
Pharmacological action General Function	Unknown) G-protein coupled receptor activity
Specific Function	Receptor for N-arachidonyl glycine. The activity of this receptor is mediated by G proteins which inhibit adenylyl cyclase. May contribute to regulation of the immune system.
Gene Name	GPR18

	Drugs 🗸
Molecular Weight	38133.27 Da
References	
	M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. 9-730. doi: 10.1007/s13311-015-0377-3. [<u>PubMed:26264914</u>]
3. G-protein coupled receptor 55	Details
Kind	Protein
Organism	Humans
Pharmacological action General Function	Unknown G-protein coupled receptor activity
Specific Function	May be involved in hyperalgesia associated with inflammatory and neuropathic pain (By similarity). Receptor for L-alpha- lysophosphatidylinositol (LPI). LPI induces Ca(2+) release from intracellular
Gene Name	GPR55
Jniprot ID	<u>Q9Y2T6</u>
Jniprot Name	G-protein coupled receptor 55
Molecular Weight	36637.12 Da
References	
	M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. 9-730. doi: 10.1007/s13311-015-0377-3. [<u>PubMed:26264914]</u>

9. 5-hydroxytryptamine receptor 1A	Details
Kind	Protein
Organism	Humans
Pharmacological action General Function	Unknown Serotonin receptor activity
Specific Function	G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for various drugs and psychoactive substances.

	Ligand binding causes a conformation change that triggers
Gene Name	HTR1A
Uniprot ID	<u>P08908</u>
Uniprot Name	5-hydroxytryptamine receptor 1A
Molecular Weight	46106.335 Da
References	
1. Ibeas Bih C, Chen T, Nunn AV, Baze	lot M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders.
	:699-730. doi: 10.1007/s13311-015-0377-3. [<u>PubMed:26264914</u>]

(Drugs ~) (
Protein
Humans
Unknown Virus receptor activity
G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for various drugs and psychoactive substances, including mescaline, psilocybin, 1-(2,5-dimethoxy-4-iodop
HTR2A
<u>P28223</u>
5-hydroxytryptamine receptor 2A
52602.58 Da

11. Neuronal acetylcholine receptor subunit alph	a-7	Details
Kind	Protein	
Organism	Humans	
Pharmacological action General Function	Unknown Toxic substance binding	
Specific Function	After binding acetylcholine, the AChR responds by an extens in conformation that affects all subunits and leads to openin ion-conducting channel across the plasma membrane. The c	ng of an
Gene Name	CHRNA7	
Uniprot ID	<u>P36544</u>	
Uniprot Name	Neuronal acetylcholine receptor subunit alpha-7	
Molecular Weight	56448.925 Da	
References		

1. Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. Neurotherapeutics. 2015 Oct;12(4):699-730. doi: 10.1007/s13311-015-0377-3. [PubMed:26264914]

12. Delta-type opioid receptor	Details
Kind	Protein
Organism	Humans
Pharmacological action General Function	Unknown Opioid receptor activity
Specific Function	G-protein coupled receptor that functions as receptor for endogenous enkephalins and for a subset of other opioids. Ligand binding causes a conformation change that triggers signaling via guanine n
Gene Name	OPRD1
Uniment ID	

https://www.drugbank.ca/drugs/DB14009

UNIDIOT IU		
	(Drugs V)	
Molecular Weight	40368.235 Da	
References		
	, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. 730. doi: 10.1007/s13311-015-0377-3. [<u>PubMed:26264914</u>]	
13. Mu-type opioid receptor	Details	
Kind	Protein	
Organism	Humans	
Pharmacological action General Function	Unknown Voltage-gated calcium channel activity	
Specific Function	Receptor for endogenous opioids such as beta-endorphin and endomorphin. Receptor for natural and synthetic opioids including morphine, heroin, DAMGO, fentanyl, etorphine, buprenorphin and methadone	
Gene Name	OPRM1	
Uniprot ID	<u>P35372</u>	
Uniprot Name	Mu-type opioid receptor	
Molecular Weight	44778.855 Da	
References		
	, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. 730. doi: 10.1007/s13311-015-0377-3. [<u>PubMed:26264914]</u>	

14. Peroxisome proliferator-activated receptor gamma	
Kind	Protein
Organism	Humans
Pharmacological action General Function	Unknown Zinc ion binding
Specific Function	Nuclear receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the nuclear receptor binds to DNA specific PPAR response elements

Gene Name	PPARG
Uniprot ID	<u>P37231</u>
Uniprot Name	Peroxisome proliferator-activated receptor gamma
Molecular Weight	57619.58 Da
References	
	t M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. 99-730. doi: 10.1007/s13311-015-0377-3. [<u>PubMed:26264914]</u>

Drugs

 \sim

Q

Kind	Protein
Drganism	Humans
Pharmacological action General Function	Unknown Transmembrane signaling receptor activity
Specific Function	Ligand-activated non-selective calcium permeant cation channel involved in detection of noxious chemical and thermal stimuli. Seems to mediate proton influx and may be involved in intracellular aci
Gene Name	TRPV1
Jniprot ID	Q8NER1
Jniprot Name	Transient receptor potential cation channel subfamily V member 1
Molecular Weight	94955.33 Da
	ic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic col. 2001 Oct;134(4):845-52. doi: 10.1038/si.bip.0704327. [PubMed:11606325]
targets for cannabidiol and its syntheti hydrolysis of anandamide. Br J Pharma 3. Iannotti FA, Hill CL, Leo A, Alhusaini A, S cannabinoids, cannabidivarin (CBDV) ar	col. 2001 Oct;134(4):845-52. doi: 10.1038/sj.bjp.0704327. [PubMed:11606325] Soubrane C, Mazzarella E, Russo E, Whalley BJ, Di Marzo V, Stephens GJ: Nonpsychotropic plant nd cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) htment of neuronal hyperexcitability. ACS Chem Neurosci. 2014 Nov 19;5(11):1131-41. doi: PubMed:25029033]
targets for cannabidiol and its syntheti hydrolysis of anandamide. Br J Pharma 3. Iannotti FA, Hill CL, Leo A, Alhusaini A, S cannabinoids, cannabidivarin (CBDV) ar channels in vitro: potential for the trea 10.1021/cn5000524. Epub 2014 Jul 29. [col. 2001 Oct;134(4):845-52. doi: 10.1038/sj.bjp.0704327. [PubMed:11606325] Soubrane C, Mazzarella E, Russo E, Whalley BJ, Di Marzo V, Stephens GJ: Nonpsychotropic plant nd cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) htment of neuronal hyperexcitability. ACS Chem Neurosci. 2014 Nov 19;5(11):1131-41. doi: PubMed:25029033]
targets for cannabidiol and its syntheti hydrolysis of anandamide. Br J Pharma 3. Iannotti FA, Hill CL, Leo A, Alhusaini A, S cannabinoids, cannabidivarin (CBDV) ar channels in vitro: potential for the trea 10.1021/cn5000524. Epub 2014 Jul 29. [col. 2001 Oct;134(4):845-52. doi: 10.1038/sj.bjp.0704327. [PubMed:11606325] Soubrane C, Mazzarella E, Russo E, Whalley BJ, Di Marzo V, Stephens GJ: Nonpsychotropic plant nd cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) htment of neuronal hyperexcitability. ACS Chem Neurosci. 2014 Nov 19;5(11):1131-41. doi: PubMed:25029033]
targets for cannabidiol and its syntheti hydrolysis of anandamide. Br J Pharmad 3. Iannotti FA, Hill CL, Leo A, Alhusaini A, S cannabinoids, cannabidivarin (CBDV) ar channels in vitro: potential for the trea 10.1021/cn5000524. Epub 2014 Jul 29. [I6. Voltage-dependent T-type calcium Kind	col. 2001 Oct;134(4):845-52. doi: 10.1038/sj.bjp.0704327. [PubMed:11606325] Soubrane C, Mazzarella E, Russo E, Whalley BJ, Di Marzo V, Stephens GJ: Nonpsychotropic plant nd cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) itment of neuronal hyperexcitability. ACS Chem Neurosci. 2014 Nov 19;5(11):1131-41. doi: PubMed:25029033]
targets for cannabidiol and its syntheti hydrolysis of anandamide. Br J Pharmad 3. Iannotti FA, Hill CL, Leo A, Alhusaini A, S cannabinoids, cannabidivarin (CBDV) ar channels in vitro: potential for the trea 10.1021/cn5000524. Epub 2014 Jul 29. [col. 2001 Oct;134(4):845-52. doi: 10.1038/sj.bjp.0704327. [PubMed:11606325] Soubrane C, Mazzarella E, Russo E, Whalley BJ, Di Marzo V, Stephens GJ: Nonpsychotropic plant nd cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) itment of neuronal hyperexcitability. ACS Chem Neurosci. 2014 Nov 19;5(11):1131-41. doi: PubMed:25029033] n channel subunit alpha-1G Details Protein Humans Unknown
targets for cannabidiol and its syntheti hydrolysis of anandamide. Br J Pharmad 3. Iannotti FA, Hill CL, Leo A, Alhusaini A, S cannabinoids, cannabidivarin (CBDV) ar channels in vitro: potential for the trea 10.1021/cn5000524. Epub 2014 Jul 29. [6. Voltage-dependent T-type calcium Kind Drganism Pharmacological action	col. 2001 Oct;134(4):845-52. doi: 10.1038/sj.bjp.0704327. [PubMed:11606325] Soubrane C, Mazzarella E, Russo E, Whalley BJ, Di Marzo V, Stephens GJ: Nonpsychotropic plant nd cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) itment of neuronal hyperexcitability. ACS Chem Neurosci. 2014 Nov 19;5(11):1131-41. doi: PubMed:25029033] n channel subunit alpha-1G Details Protein Humans
targets for cannabidiol and its syntheti hydrolysis of anandamide. Br J Pharmad 3. Iannotti FA, Hill CL, Leo A, Alhusaini A, S cannabinoids, cannabidivarin (CBDV) ar channels in vitro: potential for the trea 10.1021/cn5000524. Epub 2014 Jul 29. [I6. Voltage-dependent T-type calcium Kind Drganism Pharmacological action General Function	col. 2001 Oct;134(4):845-52. doi: 10.1038/sj.bjp.0704327. [PubMed:11606325] Soubrane C, Mazzarella E, Russo E, Whalley BJ, Di Marzo V, Stephens GJ: Nonpsychotropic plant and cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) itment of neuronal hyperexcitability. ACS Chem Neurosci. 2014 Nov 19;5(11):1131-41. doi: PubMed:25029033] n channel subunit alpha-1G Protein Humans Unknown Scaffold protein binding Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of
targets for cannabidiol and its syntheti hydrolysis of anandamide. Br J Pharmad 3. Iannotti FA, Hill CL, Leo A, Alhusaini A, S cannabinoids, cannabidivarin (CBDV) ar channels in vitro: potential for the trea 10.1021/cn5000524. Epub 2014 Jul 29. [I6. Voltage-dependent T-type calcium Kind Drganism Pharmacological action General Function Specific Function	col. 2001 Oct;134(4):845-52. doi: 10.1038/sj.bjp.0704327. [PubMed:11606325] Soubrane C, Mazzarella E, Russo E, Whalley BJ, Di Marzo V, Stephens GJ: Nonpsychotropic plant and cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) attment of neuronal hyperexcitability. ACS Chem Neurosci. 2014 Nov 19;5(11):1131-41. doi: PubMed:25029033] a channel subunit alpha-1G Protein Humans Unknown Scaffold protein binding Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hor
targets for cannabidiol and its syntheti hydrolysis of anandamide. Br J Pharmad 3. Iannotti FA, Hill CL, Leo A, Alhusaini A, S cannabinoids, cannabidivarin (CBDV) ar channels in vitro: potential for the trea 10.1021/cn5000524. Epub 2014 Jul 29. [6. Voltage-dependent T-type calcium Kind Drganism Pharmacological action General Function Specific Function	col. 2001 Oct;134(4):845-52. doi: 10.1038/sj.bjp.0704327. [PubMed:11606325] Soubrane C, Mazzarella E, Russo E, Whalley BJ, Di Marzo V, Stephens GJ: Nonpsychotropic plant nd cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) itment of neuronal hyperexcitability. ACS Chem Neurosci. 2014 Nov 19;5(11):1131-41. doi: PubMed:25029033] n channel subunit alpha-1G Protein Humans Unknown Scaffold protein binding Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hor CACNA1G
targets for cannabidiol and its syntheti hydrolysis of anandamide. Br J Pharmad 3. Iannotti FA, Hill CL, Leo A, Alhusaini A, S cannabinoids, cannabidivarin (CBDV) ar channels in vitro: potential for the trea 10.1021/cn5000524. Epub 2014 Jul 29. [6. Voltage-dependent T-type calcium Kind Drganism Pharmacological action General Function General Function Gene Name Jniprot ID	col. 2001 Oct;134(4):845-52. doi: 10.1038/sj.bjp.0704327. [PubMed:11606325] Soubrane C, Mazzarella E, Russo E, Whalley BJ, Di Marzo V, Stephens GJ: Nonpsychotropic plant nd cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) truent of neuronal hyperexcitability. ACS Chem Neurosci. 2014 Nov 19;5(11):1131-41. doi: PubMed:25029033] n channel subunit alpha-1G Protein Humans Unknown Scaffold protein binding Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hor CACNA1G 043497

|--|

1. Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, W Neurotherapeutics. 2015 Oct;12(4):699-730. doi: 10.10	halley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. 007/s13311-015-0377-3. [<u>PubMed:26264914</u>]	
17. Voltage-dependent T-type calcium channel su	ıbunit alpha-1H	Details
Kind	Protein	
Organism	Humans	
Pharmacological action General Function	Unknown) Scaffold protein binding	

pendent processes, including muscle contraction, hor pendent T-type calcium channel subunit alpha-1H a ular Targets of Cannabidiol in Neurological Disorders. 1377-3. [PubMed:26264914]	etails
a Jar Targets of Cannabidiol in Neurological Disorders. 0377-3. [PubMed:26264914]	etails
a Jar Targets of Cannabidiol in Neurological Disorders. 0377-3. [PubMed:26264914]	etails
a Jar Targets of Cannabidiol in Neurological Disorders. 0377-3. [PubMed:26264914]	etails
ular Targets of Cannabidiol in Neurological Disorders. 0377-3. [<u>PubMed:26264914</u>]	etails
0377-3. [<u>PubMed:26264914</u>]	etails
0377-3. [<u>PubMed:26264914</u>]	tails
De	tails
ed calcium channel activity	
sitive calcium channels (VSCC) mediate the entry of is into excitable cells and are also involved in a variety o pendent processes, including muscle contraction, hor	
CACNA1I	
<u>Q9P0X4</u>	
Voltage-dependent T-type calcium channel subunit alpha-11	
245100.8 Da	
P P P	pendent T-type calcium channel subunit alpha-11

19. Transient receptor potential catio	on channel subfamily A member 1	Details
Kind	Protein	
Organism	Humans	
Pharmacological action	Unknown	

General Function	lemperature-gated cation channel activity
Specific Function	Receptor-activated non-selective cation channel involved in detection of pain and possibly also in cold perception and inner ear function (PubMed:25389312, PubMed:25855297). Has a central role in t
Gene Name	TRPA1
Uniprot ID	075762
Uniprot Name	Transient receptor potential cation channel subfamily A member 1
Molecular Weight	127499.88 Da
References	
1. Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Wh Neurotherapeutics. 2015 Oct;12(4):699-730. doi: 10.10	nalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. 007/s13311-015-0377-3. [<u>PubMed:26264914]</u>

	(Drugs 🗸)
20. Transient receptor potential cation	channel subfamily M member 8 Details
Kind	Protein
Organism	Humans
Pharmacological action General Function	Unknown Calcium channel activity
Specific Function	Receptor-activated non-selective cation channel involved in detection of sensations such as coolness, by being activated by cold temperature below 25 degrees Celsius. Activated by icilin, eucalypto
Gene Name	TRPM8
Uniprot ID	<u>Q7Z2W7</u>
Uniprot Name	Transient receptor potential cation channel subfamily M member 8
Molecular Weight	127684.035 Da
References	

21. Transient receptor potential cation channel s	bubfamily V member 2 Details
Kind	Protein
Organism	Humans
Pharmacological action General Function	Unknown Calcium-permeable, non-selective cation channel with an outward rectification. Seems to be regulated, at least in part, by IGF-I, PDGF and neuropeptide head activator. May transduce physical stimuli in mast cells. Activated by temperatures higher than 52 degrees Celsius; is not activated by vanilloids and acidic pH.
Specific Function	Calcium channel activity
Gene Name	TRPV2
Uniprot ID	<u>Q9Y5S1</u>
Uniprot Name	Transient receptor potential cation channel subfamily V member 2
Molecular Weight	85980.335 Da
References	

	1, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurol 730. doi: 10.1007/s13311-015-0377-3. [<u>PubMed:26264914</u>]	ogical Disorders.
22. Transient receptor potential cati	on channel subfamily V member 3	Details
Kind	Protein	
Organism	Humans	
Pharmacological action General Function	Unknown Calcium channel activity	
Specific Function	Putative receptor-activated non-selective	calcium permeant cation

1	

niprot ID QBNETB niprot Name Transient receptor potential cation channel subfamily V member 3 PoGa5.115 Da References 1. Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. Neurotherapeutics. 2015 Oct;12(4):699-730. doi: 10.1007/s13311-015-0377-3. [PubMed:26264914] 3. Transient receptor potential cation channel subfamily V member 4 petails ind Protein Humans harmacological action Unknown		(Drugs V)	
injoret Name Transient receptor potential cation channel subfamily V member 3 iolecular Weight 90635.115 Da References . 1. beas Bith C, Chen T, Nunn AV, Bazekot M, Dallas M, Whalley BJ: Molecular Targets of Canabidiol in Neurological Disorders. Neurotherapeutics. 2015 Oct;12(4):699-730. doi:10.1007/s13311-015-0377-3. [PLNMed:20204914] 3. Transient receptor potential cation channel subfamily V member 4 Dotalis ind Protein rganism Humans harmacological action eneral Function Unitarowa Non selective calcium permeant cation channel involved in osmotic sensitivity and mechanosensitivity. Activation by exposure to hypotonicity within the physiological range exhibits an outward prectification (PubMed:18826956, PubMed:18826956, PubMed:18827696, PubMed:18827696, PubMed:18827696, PubMed:18826956, PubMed:18827696, PubMed:18825096, PubMed:18825096, Promotes cellcell ignor	Gene Name	TRPV3	
tolecular Weight 9635.115 Da References 1. Ibes 6h C, Chen T, Num AV, Bazelot M, Dallas M, Whaley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. Neurotherapeutics. 2015 Oct;12(4):699-730. doi: 10.1007/s13311-015-0377-3. [PLiNated 2026-011]	Uniprot ID	Q8NET8	
References 1: Ibeas Bih C, Chen T, Num AV, Bazelot M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. Neurotherapeutics. 2015 Oct;12(4):699-720. doi: 10.1007/s13311-0150377-3. [PubNed:2224497.6] 3: Transient receptor potential cation channel subfamily V member 4 Details ind Protein rganism Humans harmacological action eneral Function Onselective calcium permeant cation channel involved in osmotic sensitivity and mechanosensitivity. Activation by exposure to hypotonicity within the physiological range exhibits an outward rectification (PubMed:18826956, PubMed:18695040). Also activated by heat, low pk, citrate and phorbol esters (PubMed:18826956, PubMed:18826956, PubMed:18826956, PubMed:18826956, PubMed:18826950, Promotes cellulign the calcium crease of intracellular Ca(24) in synoviocytes currents. Channel activity seems to be regulated by a calmodulin- dependent mechanism with a negative feedback mechanism (PubMed:12224311, Netainequiluar Ca(24) in synoviocytes similarity). Acts as a regulator of intracellular Ca(24) in synoviocytes and also regulates production of IL-8 (PubMed:19759329). Together with PKD2, forms mechan- and thermosensitive channels in cilium (PubMed:18656040). Negatively regulates expression of PhARCC1A, UCP1, oxidative methabolism and respiration in adipocytes (8y similarity). Regulates expression of chemokines and cytokines related to proinflammatory pathway in adipocytes (9y similarity). Regulates expression of chemokines and cytokines related to proinflammatory pathway in adipocytes (8y similarity). Regulates expression of chemokines and cytokines related to proinflammatory pathway in adipocytes (9y similarity). Regulates expression of chemokines and cytokines related to proinflammatory pathway in a	Uniprot Name	Transient receptor potential cation channel subfamily V member 3	
1. beess Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ. Molecular Targets of Cannabidiol in Neurological Disorders. Neurotherspeutics. 2015 Oct, 12(4):699 730. doi: 10.1007/s13311-0150377-3. [PubMed/26264974] Details a. Transient receptor potential cation channel subfamily V member 4 Details rind Protein rganism Humans harmacological action Enthome enteral Function Non-selective calcium permeant cation channel involved in osmotic sensitivity and mechanosensitivity. Activation by exposure to hypotonicity within the physiological range exhibits an outward rectification (PubMed:18826956, PubMed:18826956, PubMed:18826956, PubMed:18826956, PubMed:18826956, PubMed:182695040). Also activated by heat, low pH, citrate and phorbol esters (PubMed:18826956, PubMed:182695040). Increase of intracellular Ca(2+) potentiates currents. Channel activity seems to be regulated by a calmodulin-dependent mechanism with a negative feedback mechanism (PubMed:12724311, PubMed:13826956). Promotes cell-cell junction formation in skin keratinocytes and plays an important role in the formation and/or maintenance of functional induced by 4-alpha-phorbol 12.13-didecanoate and hypotonic stimulation in synoviocytes and also regulates production of ILE (PubMed:19759329). Together with PKD2, forms mechano- and thermosensitive channels in cillum (PubMed:18695040). Negatively regulates expression of PARGC1A, UCP1, cudative metabolism and respiration in adjocytes (By similarity). Regulates expression of chemokines and cytokines related to proinflammatory pathway in adjocytes (By similarity). Regulates expression of chemokines and cytokines related to proinflammatory pathway in adjocy	Molecular Weight	90635.115 Da	
Neurotherapeutics. 2015 Oct;12(4):699-730. doi: 10.1007/f13311-015-03773. [PubMod:26264914] Ind Protein rganism Humans harmacological action eneral Function Iminowe Non-selective calcium permeant cation channel involved in osmotic sensitivity and mechanosensitivity. Activation by exposure to hypotonicity within the physiological range exhibits an outward rectification (PubMed:18826956, PubMed:18695040). Also activated by heat, low pH, citrate and phorbol estrers (PubMed:18826956, PubMed:18695040). Increase of intracellular Ca(2+) potentiates currents. Channel activity sems to be regulated by a calmodulin- dependent mechanism with a negative feedback mechanism (PubMed:18826950). Promotes cell-cell junction formation in skin keratinocytes and plays an important role in the formation and/or maintenance of functional intercellular ca(2+) in synoviocytes (PubMed:18759229). Plays an obligatory role as a molecular component in the nonselective cation channel activation induced by 4-alpha- phorbol 12,13-didecanoate and hypotonic stimulation in synoviocytes and also regulates production of IL-8 (PubMed:19759292). Together with KO2, forms mechano- and thermosentive channels in cilium (PubMed:186500). Negativey regulates expression of PPARGCTA, UCP1, oxidative metabolism and respiration in adipocytes (By similarity). Regulates expression of PharGCTA, UCP1, oxidative metabolism and respiration in adipocytes (By similarity). Regulates expression of PharGCTA, UCP1, oxidative metabolism and respiration in adipocytes (By similarity). Regulates expression of chemokines and cytokines related to proinflammatory pathway in adipocytes (By similarity). Together with AOP5, controls regulatory volume decrease in salivary epithelial cells (By similarity). Required for normal development and maintenance of bone and cartilage (Pu	References		
ind Protein rganism Humans Humans Linknown eneral Function Function Function Protein Calcium permeant cation channel involved in osmotic sensitivity and mechanosensitivity. Activation by exposure to hypotonicity within the physiological range exhibits an outward rectification (PubMed:18826956, PubMed:18826956, PubMed:18826950, PubMed:18826956, PubMed:18826956, PubMed:18695040). Increase of intracellular Ca(2+) potentiates currents. Channel activity seems to be regulated by a calmodulin- dependent mechanism with a negative feedback mechanism (PubMed:12724311, PubMed:18826956). Promotes cell-cell junction formation in skin keratinocytes and plays an important role in the formation in skin keratinocytes and plays an important role in the formation and/or maintenance of functional intercellular barriers (By similarity). Acts as a regulator of intracellular Ca(2+) in synoviocytes (PubMed:19759329). Plays an obligatory role as a molecular component in the nonselective cation channel activitive channels in cilium (PubMed:18695040). Negatively regulates expression of PPARGC1A, UCP1, oxidative metabolism and respiration in adipocytes (By similarity). Regulates peroduction of Le8 (pubMed:19759329). Together with AQP5, controls regulatory volume decrease in salivary epithelial cells (By similarity). Required for normal development and maintenance of bone and cartilage (PubMed:26249260).			
rganismHumansharmacological actionUnknowneneral FunctionNon-selective calcium permeant cation channel involved in osmotic sensitivity and mechanosensitivity. Activation by exposure to hypotonicity within the physiological range exhibits an outward rectification (PubMed:18826956, PubMed:18826956, PubMed:18695040). Increase of intracellular Ca(2+) potentiates currents. Channel activity seems to be regulated by a calmodulin- dependent mechanism with a negative feedback mechanism (PubMed:12724311, PubMed:18826956). Promotes cell-cell junction formation in skin keratinocytes and plays an important role in the formation and/or maintenance of functional intercellular barriers (By similarity). Acts as a regulater of intracellular ca(2+) in synovicytes (PubMed:19759329). Plays an obligatory role as a molecular component in the nonselective cation channel activation induced by 4-alpha- phorbol 12,13-didecanoate and hypotonic stimulation in synovicoytes and also regulates production of IL-8 (PubMed:19759329). Together with PKD2, forms mechano- and thermosensitive channels in cilium (PubMed:18695040). Negatively regulates expression of PPARGC1A, UCP1, oxidative metabolism and respiration in adipocytes (By similarity). Regulates expression of chemokines and cytokines related to proinflammatory pathway in adipocytes (By similarity). Together with AQP5, controls regulatory volume decrease in salivary epithelial cells (By similarity). Required for normal development and maintenance of bone and cartilage (PubMed:26249260).	23. Transient receptor potential cati	on channel subfamily V member 4 Details	
harmacological action eneral Function Non-selective calcium permeant cation channel involved in osmotic sensitivity and mechanosensitivity. Activation by exposure to hypotonicity within the physiological range exhibits an outward rectification (PubMed:18826956, PubMed:18826956, PubMed:18695040). Increase of intracellular Ca(2+) potentiates currents. Channel activity seems to be regulated by a calmodulin- dependent mechanism with a negative feedback mechanism (PubMed:12724311, PubMed:18826956). Promotes cell-cell junction formation in skin keratinocytes and plays an important role in the formation and/or maintenance of functional intercellular barriers (By similarity). Acts as a regulator of intracellular Ca(2+) in synoviocytes (PubMed:18695040). Increase and hypotonic stimulation in synoviocytes and also regulates production of IL-8 (PubMed:19759329). Together with PKD2, forms mechano- and thermosensitive channels in cilium (PubMed:18695040). Negatively regulates expression of PPARGC1A, UCP1, oxidative metabolism and respiration in adipocytes (By similarity). Regulates expression of chemokines and cytokines related to proinflammatory pathway in adipocytes (By similarity). Together with AQP5, controls regulatory volume decrease in salivary epithelial cells (By similarity). Required for normal development and maintenance of bone and cartilage (PubMed:26249260).	Kind	Protein	
eneral Function Non-selective calcium permeant cation channel involved in osmotic sensitivity and mechanosensitivity. Activation by exposure to hypotonicity within the physiological range exhibits an outward rectification (PubMed:18826956, PubMed:18695040). Also activated by heat, low pH, citrate and phorbol esters (PubMed:18826956, PubMed:18826956, PubMed:18695040). Increase of intracellular Ca(2+) potentiates currents. Channel activity seems to be regulated by a calmodulin-dependent mechanism with a negative feedback mechanism (PubMed:12724311, PubMed:18826956). Promotes cell-cell junction formation in skin keratinocytes and plays an important role in the formation and/or maintenance of functional intercellular barriers (By similarity). Acts as a regulator of intracellular Ca(2+) in synoviocytes (PubMed:19759329). Plays an obligatory role as a molecular component in the nonselective cation channel activation in synovicytes and also regulates production of IL-8 (PubMed:19759329). Together with PKD2, forms mechano- and thermosensitive channels in cilium (PubMed:18695040). Negatively regulates expression of PPARGC1A, UCP1, oxidative metabolism and respiration in adipocytes (By similarity). Regulates expression of chemokines and cytokines related to proinflammatory pathway in adipocytes (By similarity). Together with AQP5, controls regulatory volume decrease in salivary epithelial cells (By similarity). Required for normal development and maintenance of bone and cartilage (PubMed:26249260).	Organism	Humans	
_	General Function	sensitivity and mechanosensitivity. Activation by exposure to hypotonicity within the physiological range exhibits an outward rectification (PubMed:18826956, PubMed:18695040). Also activated by heat, low pH, citrate and phorbol esters (PubMed:18826956, PubMed:18695040). Increase of intracellular Ca(2+) potentiates currents. Channel activity seems to be regulated by a calmodulin- dependent mechanism with a negative feedback mechanism (PubMed:12724311, PubMed:18826956). Promotes cell-cell junction formation in skin keratinocytes and plays an important role in the formation and/or maintenance of functional intercellular barriers (By similarity). Acts as a regulator of intracellular Ca(2+) in synoviocytes (PubMed:19759329). Plays an obligatory role as a molecular component in the nonselective cation channel activation induced by 4-alpha- phorbol 12,13-didecanoate and hypotonic stimulation in synoviocytes and also regulates production of IL-8 (PubMed:19759329). Together with PKD2, forms mechano- and thermosensitive channels in cilium (PubMed:18695040). Negatively regulates expression of PPARGC1A, UCP1, oxidative metabolism and respiration in adipocytes (By similarity). Regulates expression of chemokines and cytokines related to proinflammatory pathway in adipocytes (By similarity). Together with AQP5, controls regulatory volume decrease in salivary epithelial cells (By similarity). Required for normal development and	
	Specific Function	_	

Gene Name	TRPV4	
Uniprot ID	<u>Q9HBA0</u>	
Uniprot Name	Transient receptor potential cation chann	nel subfamily V member 4
Molecular Weight	98280.2 Da	
24. Voltage-dependent anion-selective	e channel protein 1	Details
Kind	Protein	
Organism	Humans	

	the plasma membrane. The channel at the outer mitochondrial membrane allows diffusion of small hydrophilic molecules; in the plasma
Gene Name	VDAC1
Uniprot ID	<u>P21796</u>
Uniprot Name	Voltage-dependent anion-selective channel protein 1
Molecular Weight	30772.39 Da
References	
	M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. 9-730. doi: 10.1007/s13311-015-0377-3. [<u>PubMed:26264914]</u>

ENZYMES

1. Cytochrome P450 2C9	Details
Kind	Protein
Organism	Humans
Pharmacological action	Νο
Actions General Function	Substrate Inhibitor Steroid hydroxylase activity
Specific Function	Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally un
Gene Name	CYP2C9
Uniprot ID	<u>P11712</u>
Uniprot Name	Cytochrome P450 2C9
Molecular Weight	55627.365 Da
References	

1. Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. Neurotherapeutics. 2015 Oct;12(4):699-730. doi: 10.1007/s13311-015-0377-3. [PubMed:26264914]

 Rendic S: Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 2002 Feb-May;34(1-2):83-448. [PubMed:11996015]

	Details
Protein	
Humans	
Unknown	
Substrate Steroid hydroxylase activity	
	Humans Unknown Substrate

	Certain barbiturates, diazepam, propranolol, citalopram and im
Gene Name	CYP2C19
Jniprot ID	<u>P33261</u>
Jniprot Name	Cytochrome P450 2C19
Aolecular Weight	55930.545 Da
References	
	t M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. 99-730. doi: 10.1007/s13311-015-0377-3. [<u>PubMed:26264914</u>]
8. Cytochrome P450 2D6	Details
Kind	Protein
Drganism	Humans
Pharmacological action General Function	Unknown Steroid hydroxylase activity
Specific Function	Responsible for the metabolism of many drugs and environmental chemicals that it oxidizes. It is involved in the metabolism of drugs such as antiarrhythmics, adrenoceptor antagonists, and tricyclic
	CYP2D6
Sene Name	<u>P10635</u>
Jniprot ID	Cytochrome P450 2D6
Gene Name Jniprot ID Jniprot Name Molecular Weight	Cytochrome P450 2D6 55768.94 Da
Jniprot ID Jniprot Name	-

4. Cytochrome P450 3A4	Details
Kind	Protein
Organism	Humans
Pharmacological action	Unknown

Actions General Function	Substrate Vitamin d3 25-hydroxylase activity
Specific Function	Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation react
Gene Name	CYP3A4
Uniprot ID	<u>P08684</u>
Uniprot Name	Cytochrome P450 3A4
Molecular Weight	57342.67 Da
References	
drugbank ca/drugs/DB14009	

	1	

	Drugs v
5. Cytochrome P450 3A5	Details
Kind	Protein
Organism	Humans
Pharmacological action General Function	Unknown) Oxygen binding
Specific Function	Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally un
Gene Name	CYP3A5
Uniprot ID	<u>P20815</u>
Uniprot Name	Cytochrome P450 3A5
Molecular Weight	57108.065 Da
References	
	Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. 30. doi: 10.1007/s13311-015-0377-3. [<u>PubMed:26264914]</u>

6. Acetyl-CoA acetyltransferase, mitochondrial	Details
Kind	Protein
Organism	Humans
Pharmacological action General Function	Unknown Metal ion binding
Specific Function	Plays a major role in ketone body metabolism.
Gene Name	ACAT1
Uniprot ID	<u>P24752</u>
Uniprot Name	Acetyl-CoA acetyltransferase, mitochondrial
Molecular Weight	45199.2 Da
References	

1. Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders.

7. Arylalkylamine N-acetyltransferase		Details
Kind	Protein	
Organism	Humans	
Pharmacological action General Function	Unknown Not Available	
Specific Function	N-acetyltransferase activity	

Medical Cannabis - DrugBank

	(Drugs V) (
Jniprot Name	Arylalkylamine N-acetyltransferase
Molecular Weight	23343.8 Da
References	
	M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. 9-730. doi: 10.1007/s13311-015-0377-3. [<u>PubMed:26264914</u>]
3. Catalase	Details
Kind	Protein
Drganism	Humans
Pharmacological action General Function	Unknown Receptor binding
Specific Function	Occurs in almost all aerobically respiring organisms and serves to protect cells from the toxic effects of hydrogen peroxide. Promotes growth of cells including T-cells, B-cells, myeloid leukemia c
Sene Name	CAT
Jniprot ID	<u>P04040</u>
Jniprot Name	Catalase
•	
Molecular Weight	59755.82 Da

9. Prostaglandin G/H synthase 1	Details
Kind	Protein
Organism	Humans
Pharmacological action General Function	Unknown Prostaglandin-endoperoxide synthase activity
Specific Function	Converts arachidonate to prostaglandin H2 (PGH2), a committed step in prostanoid synthesis. Involved in the constitutive production of

2/6/2019

	prostanoids in particular in the stomach and platelets. In gas
Gene Name	PTGS1
Uniprot ID	P23219
Uniprot Name	Prostaglandin G/H synthase 1
Molecular Weight	68685.82 Da
References	
of AP5346, a DACH-platinum-polymer conjugat	a J, Howell SB, Nowotnik DP, Beijnen JH, Schellens JH: Phase I and pharmacokinetic trial te, administered weekly for three out of every 4 weeks to advanced solid tumor patients.):523-33. Epub 2007 Feb 17. [<u>PubMed:17308894</u>]

1

1

	Drugs 🗸
Kind	Protein
Organism	Humans
Pharmacological action General Function	Unknown Prostaglandin-endoperoxide synthase activity
Specific Function	Converts arachidonate to prostaglandin H2 (PGH2), a committed step in prostanoid synthesis. Constitutively expressed in some tissues in physiological conditions, such as the endothelium, kidney and
Gene Name	PTGS2
Uniprot ID	<u>P35354</u>
Uniprot Name	Prostaglandin G/H synthase 2
Molecular Weight	68995.625 Da
References	

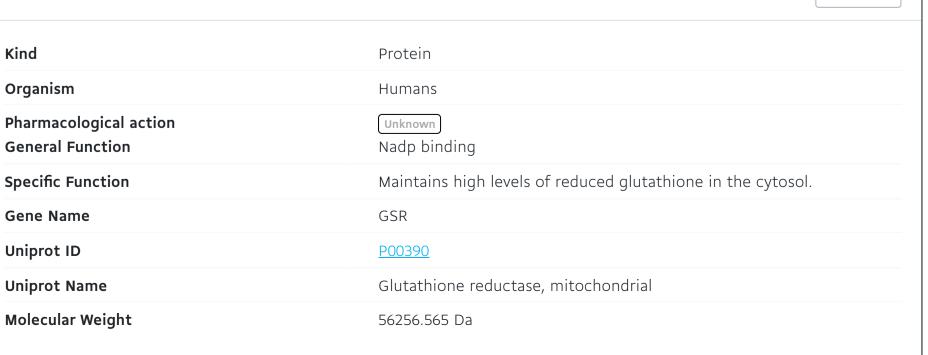
1. Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. Neurotherapeutics. 2015 Oct;12(4):699-730. doi: 10.1007/s13311-015-0377-3. [PubMed:26264914]

11. Cytochrome P450 3A7	Detail	5
Kind	Protein	
Organism	Humans	
Pharmacological action General Function	Unknown Oxygen binding	
Specific Function	Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally un	
Gene Name	СҮРЗА7	
Uniprot ID	<u>P24462</u>	
Uniprot Name	Cytochrome P450 3A7	
Molecular Weight	57525.03 Da	
References		

1. Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. Neurotherapeutics. 2015 Oct;12(4):699-730. doi: 10.1007/s13311-015-0377-3. [PubMed:26264914]

12. Cytochrome P450 1A1	Details
Kind	Protein
Organism	Humans
Pharmacological action General Function	Unknown) Vitamin d 24-hydroxylase activity
Specific Function	Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally un
Gene Name	CYP1A1
	50 (700

https://www.drugbank.ca/drugs/DB14009


	Drugs 🗸
Molecular Weight	58164.815 Da
References	
	, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. 730. doi: 10.1007/s13311-015-0377-3. [<u>PubMed:26264914]</u>
3. Cytochrome P450 1A2	Details
Kind	Protein
Drganism	Humans
Pharmacological action General Function	Unknown Oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygen
Specific Function	Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally un
Gene Name	CYP1A2
Jniprot ID	<u>P05177</u>
Jniprot Name	Cytochrome P450 1A2
Aolecular Weight	58293.76 Da
References	
1. Ibeas Bih C, Chen T, Nunn AV, Bazelot M	, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders.

14. Cytochrome P450 1B1	Details
Kind	Protein
Organism	Humans
Pharmacological action General Function	Unknown) Oxygen binding
Specific FunctionCytochromes P450 are a group of heme-thiolate monoorliver microsomes, this enzyme is involved in an NADPH-delectron transport pathway. It oxidizes a variety of struct	

	electron transport pathway. It oxidizes a variety of structurally un
Gene Name	CYP1B1
Uniprot ID	<u>Q16678</u>
Uniprot Name	Cytochrome P450 1B1
Molecular Weight	60845.33 Da
References	
	lot M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. :699-730. doi: 10.1007/s13311-015-0377-3. [<u>PubMed:26264914]</u>

	Drugs V	٩
Kind	Protein	
Organism	Humans	
Pharmacological action General Function	Unknown Not Available	
Specific Function	Not Available	
Gene Name	DAGLA	
Uniprot ID	<u>F5GY58</u>	
Uniprot Name	Sn1-specific diacylglycerol lipase alpha	
Molecular Weight	19005.05 Da	
References		
1. Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas Neurotherapeutics. 2015 Oct;12(4):699-730. doi:	A, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. 10.1007/s13311-015-0377-3. [<u>PubMed:26264914]</u>	

16. Fatty-acid amide hydrolase 1	Details
Kind	Protein
Organism	Humans
Pharmacological action General Function	Unknown) Fatty acid amide hydrolase activity
Specific Function	Degrades bioactive fatty acid amides like oleamide, the endogenous cannabinoid, anandamide and myristic amide to their corresponding acids, thereby serving to terminate the signaling functions of t
Gene Name	FAAH
Uniprot ID	<u>000519</u>
Uniprot Name	Fatty-acid amide hydrolase 1
Molecular Weight	63065.28 Da
References	
	llas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. doi: 10.1007/s13311-015-0377-3. [<u>PubMed:26264914</u>]

$\frac{1}{10000000000000000000000000000000000$	0. doi: 10.1007/s13311-015-0377-3. [<u>PubMed:26264914]</u>
8. Glutathione peroxidase 1	Details
Kind	Protein
Drganism	Humans
Pharmacological action General Function	Unknown) Sh3 domain binding
Specific Function	Protects the hemoglobin in erythrocytes from oxidative breakdown.
Gene Name	GPX1
Jniprot ID	<u>P07203</u>
Jniprot Name	Glutathione peroxidase 1
Molecular Weight	22087.94 Da
References	

19. 3-hydroxy-3-methylglutaryl-coenzyme A reductase	
Kind	Protein
Organism	Humans
Pharmacological action General Function	Unknown Nadph binding
Specific Function	Transmembrane glycoprotein that is the rate-limiting enzyme in cholesterol biosynthesis as well as in the biosynthesis of nonsterol isoprenoids that are essential for normal cell function including
Gene Name	HMGCR
Uniprot ID	<u>P04035</u>
Uniprot Name	3-hydroxy-3-methylglutaryl-coenzyme A reductase
Molecular Weight	97475.155 Da
References	

1. Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, V Neurotherapeutics. 2015 Oct;12(4):699-730. doi: 10.7	Vhalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. 1007/s13311-015-0377-3. [<u>PubMed:26264914</u>]	
20. Indoleamine 2,3-dioxygenase 1		Details
Kind	Protein	
Organism	Humans	
Pharmacological action General Function	Unknown Tryptophan 2,3-dioxygenase activity	

	(Drugs ·) (
	(PubMed:1/6/11/4). Involved in the peripheral immune tolerance, cont	
Gene Name	ID01	
Uniprot ID	<u>P14902</u>	
Uniprot Name	Indoleamine 2,3-dioxygenase 1	
Molecular Weight	45325.89 Da	
References		
	1, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. -730. doi: 10.1007/s13311-015-0377-3. [<u>PubMed:26264914]</u>	
21. Arachidonate 5-lipoxygenase	Details	
Kind	Protein	
Organism	Humans	
Pharmacological action	Unknown	
Actions General Function	Inhibitor Iron ion binding	
Specific Function	Catalyzes the first step in leukotriene biosynthesis, and thereby plays a role in inflammatory processes.)
Gene Name	ALOX5	
Uniprot ID	<u>P09917</u>	
Uniprot Name	Arachidonate 5-lipoxygenase	
Molecular Weight	77982.595 Da	
References		
	1, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. -730. doi: 10.1007/s13311-015-0377-3. [<u>PubMed:26264914]</u>	

22. Arachidonate 15-lipoxygenase		Details
Kind	Protein	
Organism	Humans	

Pharmacological action	Unknown
Actions General Function	Inhibitor Phosphatidylinositol-4,5-bisphosphate binding
Specific Function	Non-heme iron-containing dioxygenase that catalyzes the stereo- specific peroxidation of free and esterified polyunsaturated fatty acids generating a spectrum of bioactive lipid mediators. Converts
Gene Name	ALOX15
Uniprot ID	<u>P16050</u>
Uniprot Name	Arachidonate 15-lipoxygenase
Molecular Weight	74803.795 Da
References	
under a druge / DR14000	

23. N-acylethanolamine-hydrolyzing ac	id amidase Details
Kind	Protein
Organism	Humans
Pharmacological action General Function	Unknown Degrades bioactive fatty acid amides to their corresponding acids, with the following preference: N-palmitoylethanolamine > N- myristoylethanolamine > N-lauroylethanolamine = N- stearoylethanolamine > N-arachidonoylethanolamine > N- oleoylethanolamine. Also exhibits weak hydrolytic activity against the ceramides N-lauroylsphingosine and N-palmitoylsphingosine.
Specific Function	Hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds
Gene Name	NAAA
Uniprot ID	<u>Q02083</u>
Uniprot Name	N-acylethanolamine-hydrolyzing acid amidase
Molecular Weight	40065.65 Da
References	
	Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. 30. doi: 10.1007/s13311-015-0377-3. [<u>PubMed:26264914</u>]

Kind	Protein
Organism	Humans
Pharmacological action General Function	Unknown Zinc ion binding
Specific Function	Does not have alcohol dehydrogenase activity. Binds NADP and acts through a one-electron transfer process. Orthoquinones, such as 1,2- naphthoquinone or 9,10-phenanthrenequinone, are the best substr
Gene Name	CRYZ
Uniprot ID	<u>Q08257</u>
Uniprot Name	Quinone oxidoreductase

Molecular Weight	35206.36 Da	
References		
	zelot M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disor 4):699-730. doi: 10.1007/s13311-015-0377-3. [<u>PubMed:26264914</u>]	rders.
25. N-acyl-phosphatidylethanolar	mine-hydrolyzing phospholipase D	Deta
25. N-acyl-phosphatidylethanolar Kind	mine-hydrolyzing phospholipase D Protein	Deta

generation of anandamide (N-arachidonoylethanolamine), the ligand of cannabinoid and vanilloid receptors (By similarity).
Identical protein binding
NAPEPLD
<u>Q6IQ20</u>
N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D
45595.15 Da

26. Phospholipase A2	Details	
Kind	Protein	
Organism	Humans	
Pharmacological action General Function	Unknown Receptor binding	
Specific Function	PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides, this releases glycerophospholipids and arachidonic acid that serve as the precursors of signal molecules.	
Gene Name	PLA2G1B	
Uniprot ID	<u>P04054</u>	
Uniprot Name	Phospholipase A2	
Molecular Weight	16359.535 Da	
References		
1. Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. Neurotherapeutics. 2015 Oct;12(4):699-730. doi: 10.1007/s13311-015-0377-3. [<u>PubMed:26264914</u>]		

27. Steroid 17-alpha-hydroxylase/17,20 lyase

Details

i i i i i i i i i i i i i i i i i i i	
Organism	Humans
Pharmacological action General Function	Unknown Steroid 17-alpha-monooxygenase activity
Specific Function	Conversion of pregnenolone and progesterone to their 17-alpha- hydroxylated products and subsequently to dehydroepiandrosterone (DHEA) and androstenedione. Catalyzes both the 17-alpha- hydroxylation
Gene Name	CYP17A1
Uniprot ID	<u>P05093</u>
Uniprot Name	Steroid 17-alpha-hydroxylase/17,20 lyase
Molecular Weight	57369.995 Da

	л, Dallas M, Whalley BJ: Molecular largets of Cannabidiol in Neurological Disorders.	
Neurotherapeutics. 2015 Oct;12(4):699	-730. doi: 10.1007/s13311-015-0377-3. [<u>PubMed:26264914</u>]	
		_
28. Superoxide dismutase [Cu-Zn]	Details	
Kind	Protein	
Organism	Humans	
Pharmacological action	Unknown	
General Function	Zinc ion binding	
Specific Function	Destroys radicals which are normally produced within the cells and which are toxic to biological systems.	
Gene Name	SOD1	
Uniprot ID	<u>P00441</u>	
Uniprot Name	Superoxide dismutase [Cu-Zn]	
Molecular Weight	15935.685 Da	
References		
1 hope Dib C Chap T Nump AV Develat	A Delles M. Whellow Di Meleculer Terrete of Connebidiel in Neurole sizel Diserders	
	1, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. -730. doi: 10.1007/s13311-015-0377-3. [<u>PubMed:26264914]</u>	

29. Sphingomyelin phosphodiesterase	Details
Kind	Protein
Organism	Humans
Pharmacological action General Function	Unknown Sphingomyelin phosphodiesterase activity
Specific Function	Converts sphingomyelin to ceramide. Also has phospholipase C activities toward 1,2-diacylglycerolphosphocholine and 1,2- diacylglycerolphosphoglycerol. Isoform 2 and isoform 3 have lost catalytic ac
Gene Name	SMPD1
Uniprot ID	<u>P17405</u>
Uniprot Name	Sphingomyelin phosphodiesterase
Molecular Weight	69751.3 Da

References

1. Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. Neurotherapeutics. 2015 Oct;12(4):699-730. doi: 10.1007/s13311-015-0377-3. [PubMed:26264914]

TRANSPORTERS

1. Multidrug resistance-associated protein 1

Details

	(Drugs V)	٩)
Organism	Humans	
Pharmacological action	Unknown	
Actions General Function	(Inhibitor) Transporter activity	
Specific Function	Mediates export of organic anions and drugs from the cytoplasm. Mediates ATP-dependent transport of glutathione and glutathione conjugates, leukotriene C4, estradiol-17-beta-o-glucuronide, methotre	
Gene Name	ABCC1	
Uniprot ID	<u>P33527</u>	
Uniprot Name	Multidrug resistance-associated protein 1	
Molecular Weight	171589.5 Da	
References		

1. Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. Neurotherapeutics. 2015 Oct;12(4):699-730. doi: 10.1007/s13311-015-0377-3. [PubMed:26264914]

2. ATP-binding cassette sub-family G member 2	Details
Kind	Protein
Organism	Humans
Pharmacological action	Unknown
Actions General Function	(Inhibitor) Xenobiotic-transporting atpase activity
Specific Function	High-capacity urate exporter functioning in both renal and extrarenal urate excretion. Plays a role in porphyrin homeostasis as it is able to mediates the export of protoporhyrin IX (PPIX) both fro
Gene Name	ABCG2
Uniprot ID	<u>Q9UNQ0</u>
Uniprot Name	ATP-binding cassette sub-family G member 2
Molecular Weight	72313.47 Da

References

1. Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders. Neurotherapeutics. 2015 Oct;12(4):699-730. doi: 10.1007/s13311-015-0377-3. [PubMed:26264914]

3. Equilibrative nucleoside transport	er 1 Details
Kind	Protein
Organism	Humans
Pharmacological action	Unknown
Actions General Function	(Inhibitor) Nucleoside transmembrane transporter activity
Specific Function	Mediates both influx and efflux of nucleosides across the membrane (equilibrative transporter). It is sensitive (ES) to low concentrations of the inhibitor nitrobenzylmercaptopurine riboside (NBMPR

Uniprot Name	Equilibrative nucleoside transporter 1	
Molecular Weight	50218.805 Da	
References		
1. Ibeas Bih C, Chen T, Nunn AV, Bazel	ot M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders.	
	699-730. doi: 10.1007/s13311-015-0377-3. [<u>PubMed:26264914</u>]	
	CJ: Inhibition of an equilibrative nucleoside transporter by cannabidiol: a mechanism of	
cannabinoid immunosuppression. I May 3. [<u>PubMed:16672367</u>]	Proc Natl Acad Sci U S A. 2006 May 16;103(20):7895-900. doi: 10.1073/pnas.0511232103. Epub 2006	

Drug created on April 13, 2018 12:28 / Updated on November 02, 2018 07:49

About	Support
<u>About DrugBank</u>	FAQ
<u>DrugBank Blog</u>	<u>Help</u>
<u>Wishart Research Group</u>	<u>Email Support</u>
<u>Terms of Use</u>	
<u>Privacy Policy</u>	

This project is supported APA the Ganadian Institutes of Health Research (award #111062), Alberta Innovates - Health Solutions, and by The Data Licenses Metabolomics Innovation Centre (TMIC), a nationally-funded research and core facility that supports or twide range of cutting-edge metabolomic studies. TMIC is funded by Genome Alberta, Genome British Columbia, and Genome Canada, a not-for-profit organization that is leading Canada's national genomics strategy with funding from the federal government. Maintenance, support, and commercial licensing is provided by OMx Personal Health Analytics, Inc. Designed by Educe Design & Innovation Inc.

